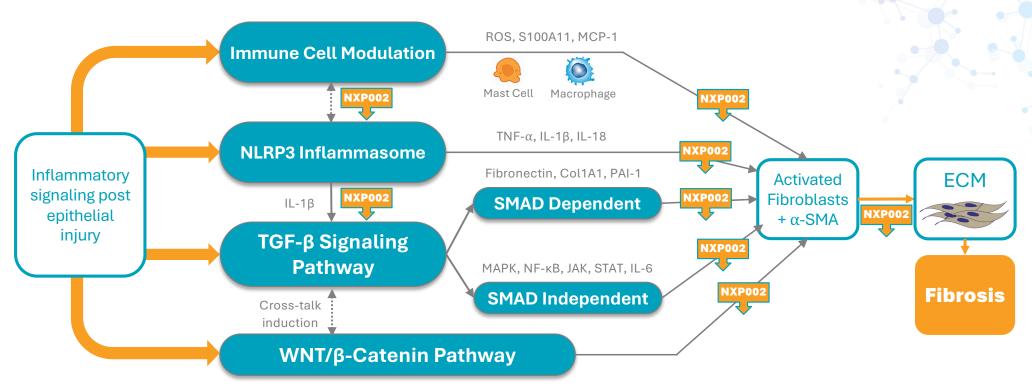


Unlocking Therapeutic Potential in Fibrosis

NXP002 Pathway and translation update, September 2025

Lessons learnt from 10 years of intense R&D in IPF:

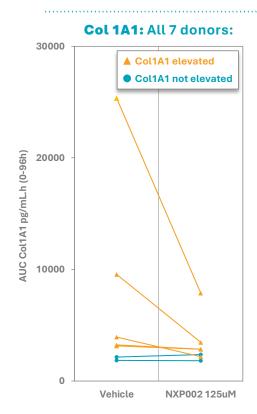

Future therapies should be...

- ✓ Inhaled: IPF = fibrosing alveolitis (: treat disease from where it originated and propagates)
 - Developability, avoidance of DDIs, avoidance of systemic AE's, allow healthy tissue repair, increased efficacy...
 - Maximise patient access (e.g. early-stage patients who currently decline SoCs) and minimise discontinuation
 - Growing clinical evidence of patient preference and efficacy
- ✓ Pleiotropic/poly-pharmacology:
 - IPF is not a single target disease (multiple co-activated pathways)
 - Must modulate multiple master disease mechanisms (fibrosis and inflammation)
- ✓ Additive/synergistic with Standards of Care:
 - 50% of patients cannot tolerate SoC genericization unlikely to change this
 - Leverage benefits of SoC's where tolerated, bringing additivity and synergy
- ✓ Potential to reverse disease/restore tissue function
- $oldsymbol{\checkmark}$ Clinical proof of concept established in fibrotic indications across multiple organs

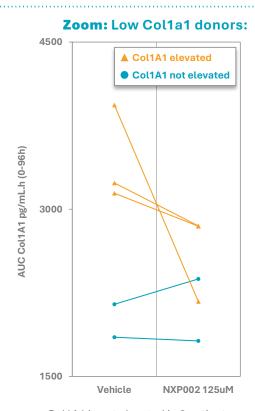
Poly-pharmacology: Compelling evidence for NXP002's utility

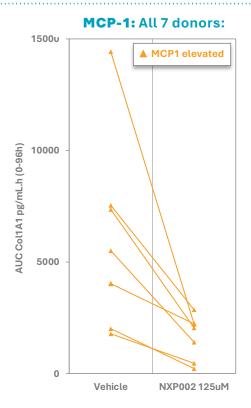
Modulation of immune cells, WNT/β-Catenin and NLRP3 pathways in parallel to core TGF- β signal suppression

Collectively NXP002 provides multi-nodal regulation of fibrosis via core and emerging pathways

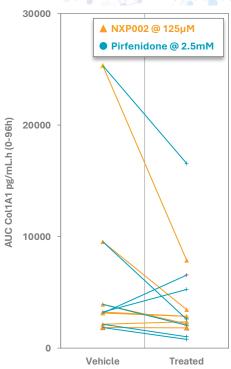


Clinical Translation: Antifibrotic efficacy across multiple organs


	Skin*	Heart	Lung*	Kidney	Liver
Cell & Tissue Models	Scar Fibroblasts √ ‡ Collagen I, Collagen III, α- SMA, Fibronectin & CTGF Scleroderma F'blasts ‡ Collagen, TGF-β	Cardiac Fibroblasts √	Fibroblasts	Rat Mesangial Cells \$\display \text{H-proline} Cortical Fibroblasts \$\display \text{CTGF mRNA & pSMAD2}	√ Human PCLS
Animal Models	Rosacea-like Mice \$\forall TNF-\alpha, IL-6, IL-1\beta, IL-18 \beta 1 \$\forall TGF-\beta 1/Smad2/3 Burn Injury (Rat) \$\forall Collagen, TGF-\beta 1/Smad2	Hypertensive Rat	Bleomycin (old rat)	Nephrectomised Rat √ ‡ fibrosis, p-SMAD2 and macrophage accumulation UUO Fibrosis (Rat) ‡ TGF-β, p-SMAD2 & EMT	Dietary NASH (Rat) √
Clinical Studies	Scleroderma ✓ \$ Deep dermal fibrosis & refractory lesions Acne/Surgical Scarring ↑ Scar appearance	Heart Failure \$ Worsening of cardiac functioning in muscular dystrophy patients	Lung Fibrosis	Kidney Fibrosis	
Pathways	TGF-β/SMAD NLRP3 Inflammasome	WNT/β-Catenin TGF-β/SMAD NLRP3 Inflammasome	TGF-β/SMAD NLRP3 Inflammasome Immune Cell Modulation	TGF-β/SMAD NLRP3 Inflammasome	TGF-β/SMAD NLRP3 Inflammasome

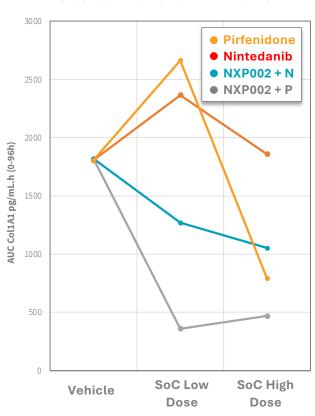

NXP002: Fibrosis regulation in 7 IPF patient lung tissue donors

- > NXP002 significantly attenuates Col1A1 where elevated.
- > Col1A1 elevation in 5 donors tissue turnover on-going & inhibited by NXP002.

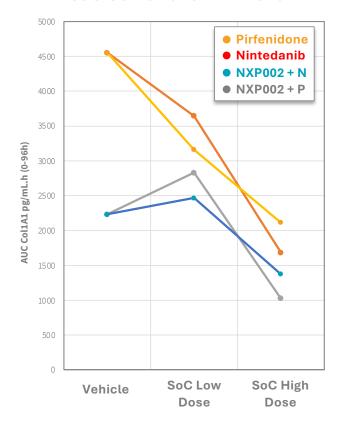


- > Col1A1 is not elevated in 2 patients ∴ cannot be attenuated by NXP002.
- > NXP002 may regulate fibrotic disease; limits progression yet allows healthy healing.

- MCP-1 linked with pro-fibrotic tissue environment – expected for late stage IPF
- MCP-1 is elevated in all donors & significantly attenuated by NXP002 (\$ ECM)



- > Pirfenidone shows less significant & consistent Col1A1 attenuation vs NXP002.
- > Pirfenidone attenuates Col1A1 when not overexpressed (impact on healthy healing).



NXP002: Synergy/additivity in combination with SoC's

SoC Combination IPF Donor 1:

SoC Combination IPF Donor 2:

Result:

- NXP002 125µM SoC combinations always achieve superior attenuation of Col1a1 versus NXP002 or SoCs alone.
- > Similar result achieved for other fibrosis biomarkers (e.g. fibronectin) and biomarkers related to inflammation and a pro-fibrotic tissue environment (e.g. MCP-1).
- Further data demonstrates NXP002 acting via additional pathways to SoCs.
- > These results may support dosesparring of oral SoCs for patients managing their AEs.

Conclusions and next steps

NXP002 satisfies multiple key criteria for further development in fibrotic ILDs:

- **✓ Inhaled:** Now a validated and attractive treatment option for IPF and PPF
- **✓ Poly-pharmacology:** Clear evidence for regulation of multiple validated and emerging pathways in fibrosis
- ✓ Compelling translational evidence base:
 - Multiple tissue/disease studies demonstrate consistent results across multiple institutions
 - Complimentary to and consistent with Nuformix proprietary data
 - Clinical proof of concept established in multiple fibrotic conditions, including lung, providing confidence in a challenging therapeutic area
 - o Includes clinically proven potential to reverse disease/restore tissue function
- **✓ Additive to SoCs:** Synergistic pathway suppression, increasing efficacy
- **✓ Orphan and long-term IP position in place:** EMA ODD in place FDA decision Nov' 25. IP granted.

Objectives: Establish a long-term development partner now to access specialist clinical development expertise with flexibility on partnering terms.

